Energy-Momentum Distribution of the Weyl-Lewis-Papapetrou and the Levi-Civita Metrics

نویسنده

  • M. Sharif
چکیده

This paper is devoted to compute the energy-momentum densities for two exact solutions of the Einstein field equations by using the prescriptions of Einstein, Landau-Lifshitz, Papapetrou and Möller. The spacetimes under consideration are the Weyl-Lewis-Papapetrou and the Levi-Civita metrics. The Weyl metric becomes the special case of the Weyl-Lewis-Papapetrou solution. The Levi-Civita metric provides constant momentum in each prescription with different energy density. The Weyl-Lewis-Papapetrou metric yields all the quantities different in each prescription. These differences support the well-defined proposal developed by Cooperstock and from the energy-momentum tensor itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Teleparallel Energy-Momentum Distribution of Lewis-Papapetrou Spacetimes

In this paper, we find the energy-momentum distribution of stationary axisymmetric spacetimes in the context of teleparallel theory by using Möller prescription. The metric under consideration is the generalization of the Weyl metrics called the Lewis-Papapetrou metric. The class of stationary axisymmetric solutions of the Einstein field equations has been studied by Galtsov to include the grav...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Energy and Momentum in Spacetime Homogeneous Gödel-type Metrics

Using Einstein and Papapetrou energy-momentum complexes, we explicitly calculate the energy and momentum distribution associated with spacetime homogeneous Gödel-type metrics. We obtain that the two definitions of energy-momentum complexes do not provide the same result for these type of metrics. However, it is shown that the results obtained are reduced to the energy-momentum densities of Göde...

متن کامل

Connections Compatible with Tensors. a Characterization of Left-invariant Levi–civita Connections in Lie Groups

Symmetric connections that are compatible with semi-Riemannian metrics can be characterized using an existence result for an integral leaf of a (possibly non integrable) distribution. In this paper we give necessary and sufficient conditions for a left-invariant connection on a Lie group to be the Levi–Civita connection of some semi-Riemannian metric on the group. As a special case, we will con...

متن کامل

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007